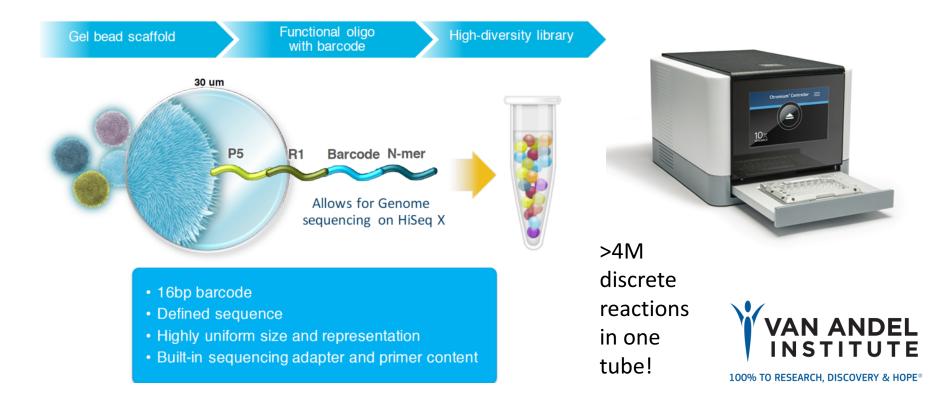
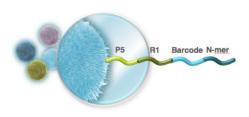
10X Chromium

Single Cell and Long Read Sequencing Applications and Workflow

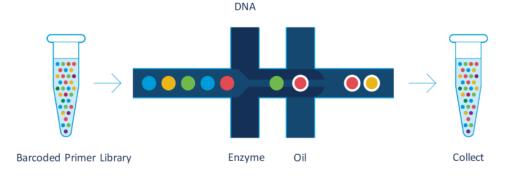
Marie Adams, MS Genomics Core Director Van Andel Institute



Introduction


- Overview of Chromium Instrument Workflow
- Chromium and Linked Read Sequencing
- Chromium and 3' scRNA Sequencing
- Chromium sc V(D)J human T-cells only

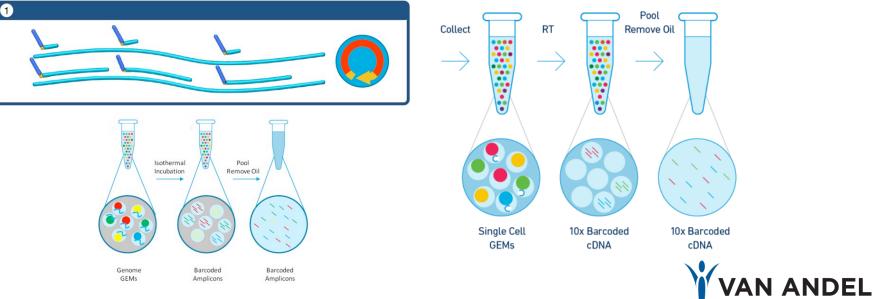
10X Genomics


Reagents and Partitioning

3 Components:

- 1. Gel Beads
- 2. Genomic DNA with Enzyme Mix
- 3. Partitioning Oil

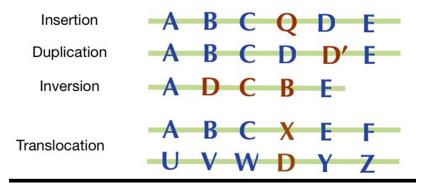
GEMs (<u>G</u>el beads in <u>EM</u>ulsion)



Inside the GEM

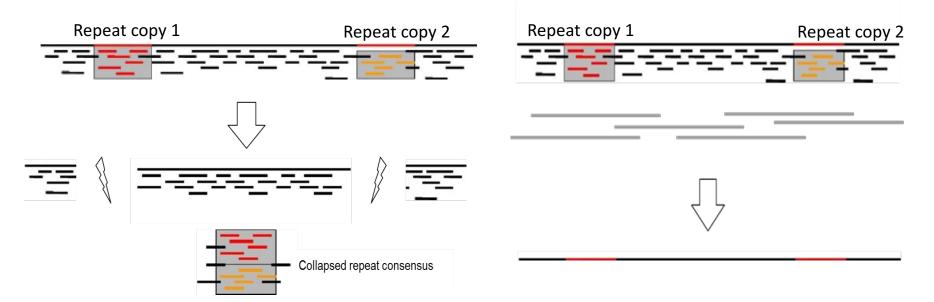
Linked Read

After emulsion is broken, move forward into Illumina library preparation and sequencing

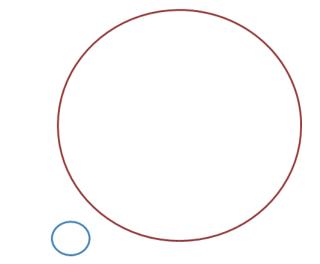

100% TO RESEARCH, DISCOVERY & HOPE®

NSTITUTE

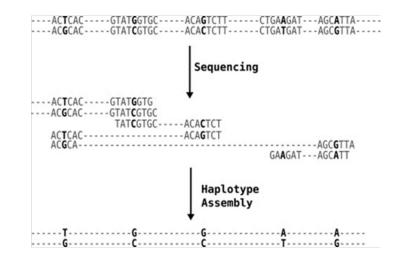
Linked Read Sequencing


"Long read Sequencing": Unlocking Structural Variation

- Repeat/low complexity region resolution
- de novo genomes
- Phasing/haplotyping


Repeats: Short vs Long Reads

Long reads make "cleaner" genomes


Long reads can phase haplotypes

Maternal ATGCTACGATCGCTCG Paternal ATGGTACGATCGATCG

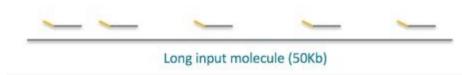
Unphased: ATG TACGATCG TCG

A few phasing possibilities

Maternal	ATGCTACGATCGCTCG	Maternal	ATGGTACGATCGATCG
Paternal	ATGGTACGATCGATCG	Paternal	ATGCTACGATCGCTCG
Maternal	ATGCTACGATCGATCG	Maternal	ATGGTACGATCGCTCG
Paternal	ATGGTACGATCGCTCG	Paternal	ATGCTACGATCGATCG

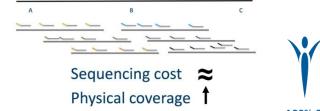
10X Genomics Linked-Reads

Long Range information from Short Length reads

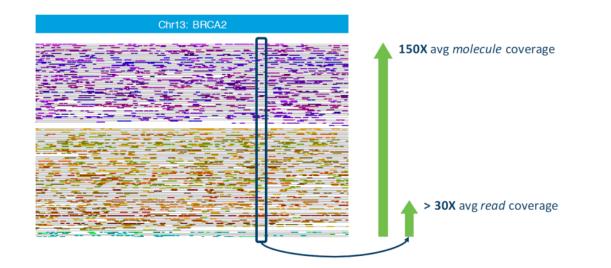

- 1. Partition Long DNA fragments into individual GEMs
- 2. Fragment DNA once in the GEM
- 3. Append a GEM-specific barcode to each DNA fragment
- 4. Sequence short fragments
- 5. Use Barcode to link short reads back to larger input molecule

Linked-Reads

Physical vs molecule coverage


Each Long Fragment is sequenced sparsely (~0.2x coverage)

Trade - off between "Molecule Coverage" and "Read Coverage". We may not see every base, but sparse coverage allows us to find overlap between different long read fragments. Lowers "dropout regions"

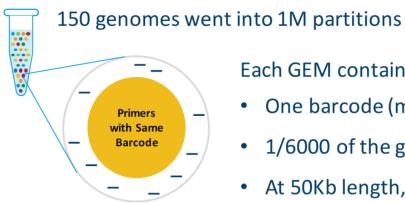


Sequencing cost Physical coverage

Physical vs molecule coverage

Example:

- 150 long molecules span region of interest (150x molecule coverage)
- Sequencing data available for 30 of those reads (30x physical coverage)



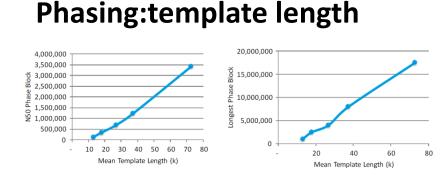
How do Linked Reads work?

- Locus Limiting dilution
 - We start with very dilute DNA, ~1ng
 - Each GEM has ~10 random input molecules
 - NOT 1:1!!!!
 - Goal: avoid getting >1 molecule covering the same locus to get the same barcode

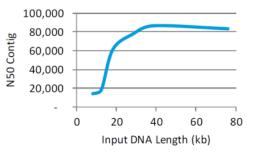
Inside a GEM

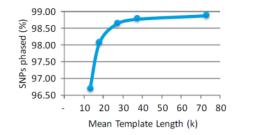
- Each GEM contains:
- One barcode (many copies)
- 1/6000 of the genome (500 Kb)
- At 50Kb length, 10 molecules

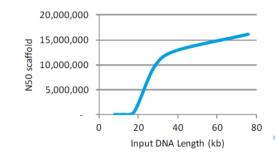
Chance that 2 molecules covering a locus are in same GEM: 1 in 6000

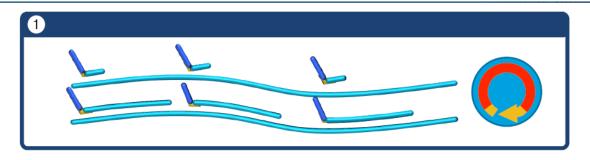

Percent unique barcodes at any genomic locus:

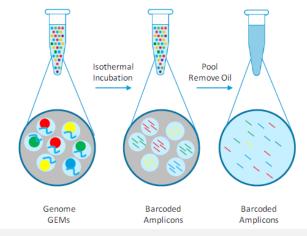
99.98%



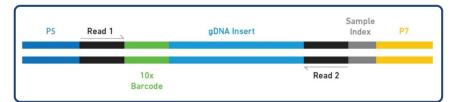

Practical input considerations


We want LONG DNA molecules – 50 KB min, 80-100 kb ideal


Input Considerations


- Recommendations:
 - Slow pipetting and genomic tips, minimal handling
 - Choose an extraction method meant to maintain long DNA fragments
 - Think about tissue/cell storage
 - Snap freezing, cryo-storage

Inside GEMs – isothermal amplfication turns into short reads

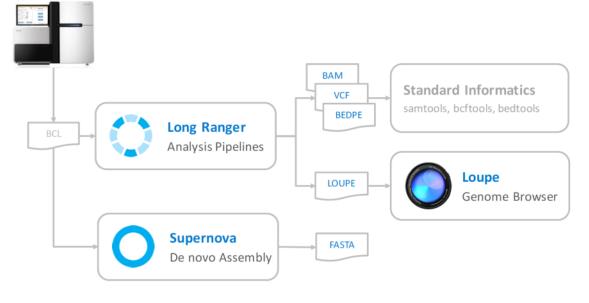


5EARCH, DISCOVERY & HOPE®

PostGEM library construction

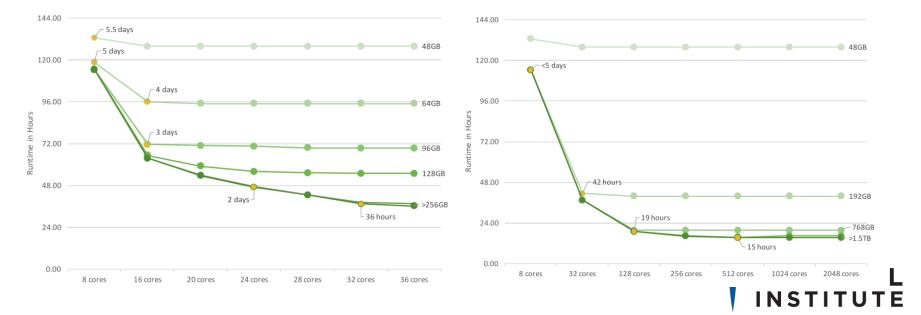
Whole Genome Sequence

Recommend 38-56x raw coverage: NextSeq: 2 flowcells, 2x150 bp HiSeq4000: 3 lanes, 2x100 bp NovaSeq: S2FC 1.5 lanes, S4 FC: ½ lane



Chromium Software Suite

Powerful Linked-Reads analysis software for a wide range of applications



Analysis resource comparison

Single Box

High Performance Cluster

10X - Structural variation and haplotyping in psychiatric disorders

Psychiatric Disorder Sequencing Project Adds 10x Genomics Tech for Phasing, Structural Variant ID

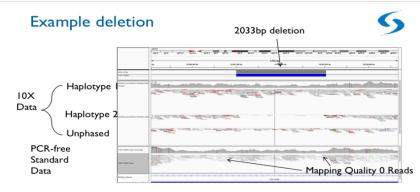
Mar 03, 2017 | Monica Heger

🛿 Premium


NEW YORK (GenomeWeb) – The InPSYght project is about halfway towards its goal of sequencing 10,000 whole genomes in order to study schizophrenia and bipolar disorder, as well as to increase the amount of genomic data available from individuals of African ancestry. As part of the project, 500 genomes will also include linked read data generated using 10x Genomics' Chromium platform.

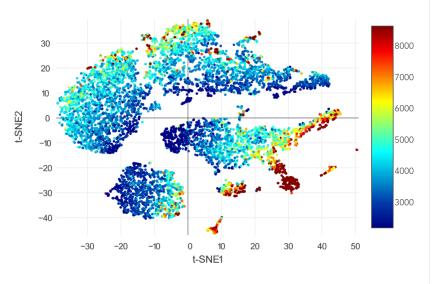
The main goals of including 10x Genomics data are to enable phasing of the genomes as well as to improve structural variant detection, Chris Whelan, a computational biologist at the Broad Institute, said in an interview. Whelan also discussed a 50-whole-genome pilot project last month during a presentation at the Advances in Genome Biology and Technology conference in Hollywood Beach, Florida.

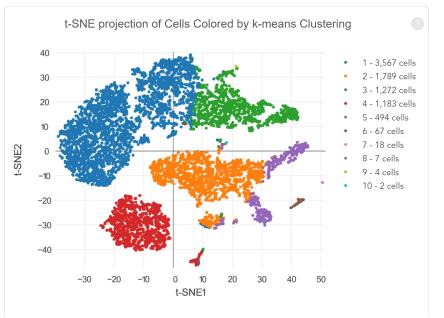
The National Institute of Mental Health funded the InPSYght project in 2014 with a \$16 million grant to researchers from the Broad Institute, the University


Differential Coverage

 322 protein coding genes in regions covered by linked reads in the majority of our samples but not in standard libraries

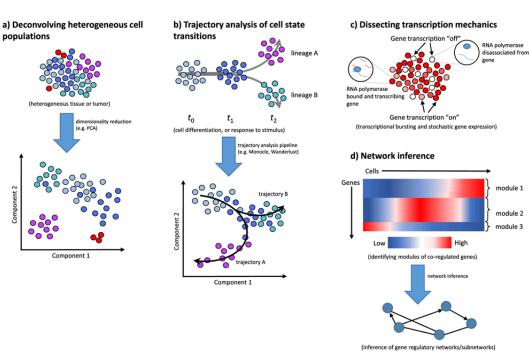
Project Goals:


- WGS for 10k schizophrenia, bipolar and control samples.
- Identify variants associated with disease
- Reference panel of structural events



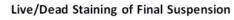
Segmental Duplication containing GOLGA8B

3' single cell sequencing


t-SNE Projection of Cells Colored by UMI Counts

Why use single cell?

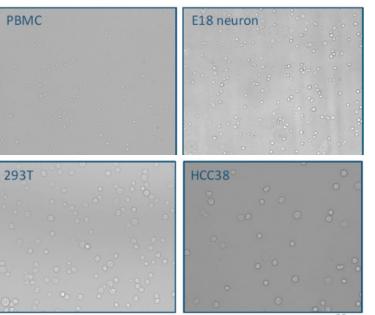
Liu S and Trapnell C. Single-cell transcriptome sequencing: recent advances and remaining challenges [version 1]. F1000Research 2016, 5:182 (doi: 10.12688/f1000research.7223.1)

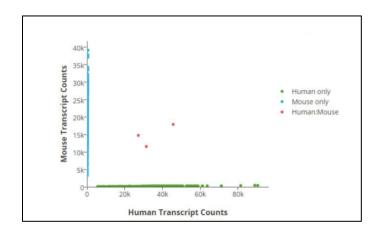

- Transcript heterogenetity
- Novel cell type discovery
- New markers for known cells
- Cell type separation
 - Not all cell types/species have defining flow cytometry markers!
- Developmental pathway & cellular trajectory analysis
- Cell signalling and Cellular
 networks
 VAN ANDEL
 NSTITUTE

Single cell prep considerations

- We've got live cells, people!! Treat them gently, but not too gently
 - Single cell preparation is vital to avoid clogs– trypsinize tissues, strain to remove debris
 - Conversely non-cell mRNA can contaiminate GEMs.
 Wash cells with PBS+BSA
- Quantitate accurately should be the last thing you do before loading
 - 65% of cells recovered in GEMs
 - Under/over loading = non optimal sequencing depth
 - Count cells at rough concentration of 700-1400 cells/mL for best accuracy
- Cell Viability ->85% live cells
 - Miltenyi live/dead kit to increase live cell %
 - Dead cells take up GEMs too, and can confound results

Successful emulsions



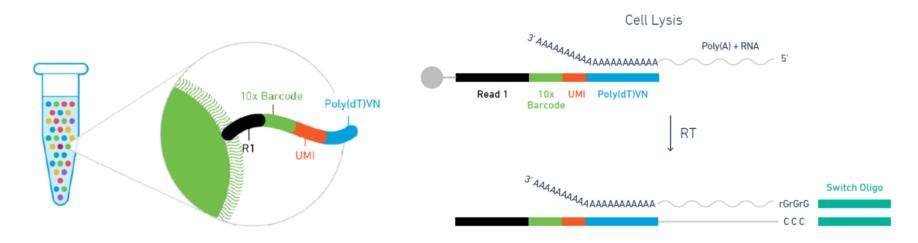

Single cell prep considerations

- Cell Size
 - 5-30 uM, preferably round
 - No cell walls. Sorry plant folks.
- What types of cells have been validated?
 - PBMCs, neurons, Jurkat, Raji, 293T cells, *young* cardiomyocytes
 - Nuclei (brand new protocol!)
- Cell Ranges
 - Wide dynamic range: 0.5ng-220 ng RNA
 - Equivalent to:
 - 870-17,800 cells input;
 - 500-10,000 cells output
- How do I get my cells to VAI?
 - Want to keep on ice, and load ASAP ideally 30 min, not more than 2hrs
 - Some types of cells are stickier than others we're looking at you PBMCs!!!
 - Cryopreservation protocols are available

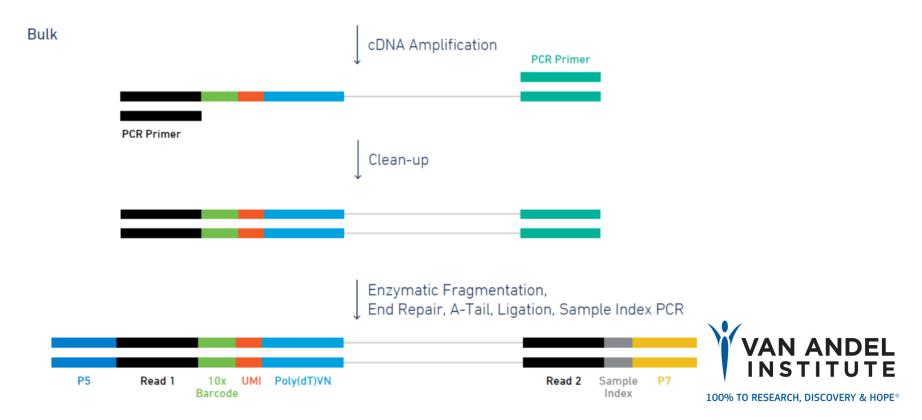
scRNA is not always single cell

User controlled trade-off between cell numbers and doublet rate

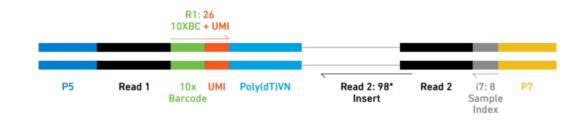
Multiplet Rate (%)	# of Cells Loaded	# of Cells Recovered
~0.4%	~870	~500
~0.8%	~1700	~1000
~2.3%	~5300	~3000
~3.9%	~8700	~5000
~7.6%	~17400	~10000


Small proportion of cells will have doublets

- Shown here as mouse:human transcript mixes
 - 8 mouse:human cells out of 1500
- Cell number:doublet rate is linear
 - Multiplet rate 1700 cells = 0.8%
 - Multiplet rate 17000 cells = 7.6%


^{100%} TO RESEARCH, DISCOVERY & HOPE®

scRNA: inside the GEM

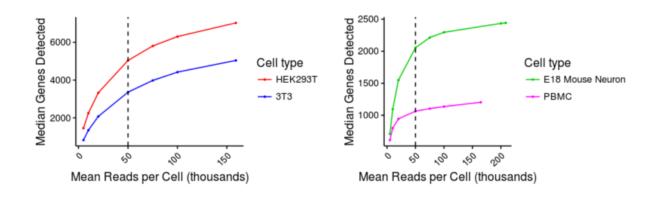


Lib Prep details

Sequencing details

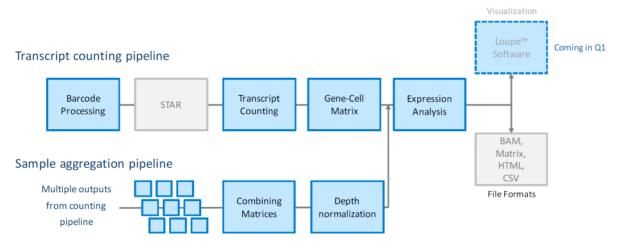
Sequencing Read	Description	Recommended Number of Cycles	Notes
Read 1	10x Barcode Read (Cell) and Randomer Read (UMI)	26 cycles	It cannot be shorter than 26 bp If longer than 26 bp it will be ignored by CellRanger
i7 Index	Sample Index Read	8 cycles	If longer than 8 bp it will need to be trimmed during basecalling
i5 Index	N/A	0 cycles	N/A
Read 2	Insert Read (Transcript)	98 cycles	Can be adjusted*

*User controlled trade-off between read length and mapping rate

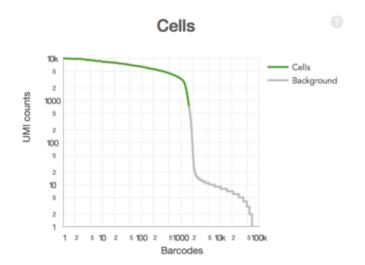

Sequencers: NextSeq/MiSeq: Compatible

HiSeq/NovaSeq: TALK WITH YOUR CORE! - Due to weird read length configuration hard to mix on flowcell w/ "standard libraries"

Sequencing depth


- 50K raw reads/cell is minimum recommendation
- Cell type dependent 90K raw reads/cell tends to be start of "limiting returns" for more complex cells
- Note this is still a LOT of sequencing! 50k raw reads x 4000 cells = 200M reads, 90K x 4000 = 360M reads

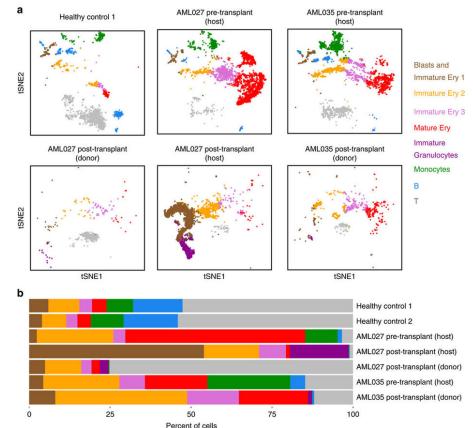
scRNA analysis- Cell Ranger Pipeline


Runs on Linux, builds on existing algorithms – eg STAR alignment pipeline Processing intensive – 50 core hours/100M reads, one project can take 90-100 core hours

scRNA pipeline – defining a "cell"

- Sum UMI counts for each barcode
 - Barcode: must be on a static list, 1 mismatch allowed
 - UMI: must be nonhomopolymer, non N, base Q scores >10
- Retain only barcodes with total UMI count >10% of 99th percentile of total expected cells

scRNA defined pre/post transplant cell populations


nature <u></u>	ATIONS	<u> </u>		
	Altmetric: 168	Citations: 27		More detail ≫

Article | OPEN

Massively parallel digital transcriptional profiling of single cells

Grace X. Y. Zheng, Jessica M. Terry [...] Jason H. Bielas 🛤

"we developed a computational method to distinguish donor from host cells in bone marrow transplant samples by genotype.....to compare subpopulation changes in acute myeloid lekemia (AML) patients" before and after transplant.

VAI Cores and Services

Genomics Core https://genomicscore.vai.org/

- NGS Sequencing
- Illumina iScan arrays
- Cytogenetics

Julie Koeman, ASCP

Mary Rhodes

Other Cores:

- Bioinformatics and Biostatistics
- Confocal Microscopy & Quantitative Imaging
- Cryo-EM
- Flow Cytometry
- Pathology and Biorepository
- Small Animal Imaging
- Vivarium and Transgenics Imaging

